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A Determinizable Class of Timed Automata

Raje~ev Alur1  Lirnor Fix 2 Thomas A. He~nzingcr'*

" ATl&T Bell id)Oatorlm Miurray Hill, NJ
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hehavol~s.Availabuiit Codes
We H.lso culmniaiel- -er lP'~l111 6 Unnu-. 1aiorniala (EPA), whrichi conti.Kir
clocks OalI ia. predit I cI.lie 1.1rrie, or O.lie fiex . t cc iii ieri cc or an eve nit.. Th'le Owls Dist Avail and/Ior
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jiioperl~i.s. W~e providt! a i al1gorit hii loir clutrikirig iF a Limredl aidlonriatoni j
rrnectrs a. ajiecilbualioni I [at. is gi Yen asi all i-VITi I-cloc~k awit-orrialori.

1 hItroduction

Finite automata are instrumental for the modeling and analysiscof many phe~nom-
ena. within computer science.. In particular, automa~t~a theory plays an important
role in the verification of concurrent finite-state systems [10, 16]. In the trare
modlel for concurrent computation, a.systemn is identified with it~s behaviors. As-
siiming that. a behavior is represented as a. sequience. of states or events, the,
possible behaviors of a. system can he vriewed as a. formal laingutage, and the sys-
temi can be modeled as, an automanton that generates the. languiage, (a complex
system is modeled as the produict. of automnata. that represent the component
systems). Since the admissible behaviors of th~e system also constitute a. formal
lainguage, the. requfirements specification ca~n be. given by another automaton
(the adequacy of automata as a. specification formalism is jutstified by the fact
that competing formalisms such as linear temporal logic, are, no more. expres-
sive). The verification problem of checking tha~t a. system meets its specification,
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then, reduces to testing language inclusion between two automata.. The decision
procedure for language inclusion typically involves the complemnnta.tion of the

specification automaton, which in turn relies upon determiniza.tion [9, 15].
To capture the behavior of a real-time system, the model of computation

needs to be augmented with a. notion of time. For this purpose, timed au-
tomata [3] provide a simple, and yet powerful, wa.y of annotating state-transition
graphs with timing constraiints, using finitely many rcal-valued variables called
clocki. A timed automaton, then, acccpts timed word., strings in which each
symbol is paired with a real-valued time-stamp. While the theory of timed a.u-
tomata, allows the automatic verification of certain real-time requirements of

finite-state systems [1, 3, 4, 8], and the solution of ccrtain delay problems [2.
6], the general verification problem (i.e., language inclusion) is undccidable for
timed alutomata. [3]. This is because, unlike in the untimed case, the nonde-

terministic variety of timed automata, is strictly more expressive than the de-
terministic v-ariety. The notion of nondeterminism allowed by timed automata,

therefore, seems too permissive, and we hesitate to accept timed aiutomata. as
the canonical model for fii.ite-state real-time computation [5].

In this paper, we obtain a. determiniza-blc class of timed automata. by re-

stricting the use of clocks. The clocks of an c.cnt-clocrk auatomaton. have a. fixed,
predefined association with the symbols of the input alphabet (the alphabet sym-
bols typically represent events). The rvrnt-rrcordiSVg clock of the input symbol a

is a. history variable whose value always equals the time of the last occurrence of
a rclativw to the current time; the cvcznt-prcdicting clock of a is a. prophecy vari-
able whose value always equals the time of the next occurrence of a relative to
the current time (if no sucli occurrence exists, then the clock value is undefined).

Thus, unlike a. timed automaton, an event-clock automanton does not control the

reassignments of its clocks and, at each input symbol, all clock values of the
automaton are determined solely by the input word. This property allows the

determinization of event-clock automnata, which, in turn, leads to a. complemen-
tation procedure. Indeed, the class ECA of event-clock automata is closed 1inder

all boolean operations (timed automata. are not closed under complement), and
the language inclusion problem is decidable for event-clock automata.

While event-predicting clocks axe useful for the specification of timing re-

quirements, automata, that contain only event-recording clocks (crv-Cn-rcoarding
automata) axe a suitable abstract model for real-time systems. We confirm this
claim by proving that event-recording automata are as powerful as another popu-

lar model for real-time computation, timed tran.istion .•yJrtms [7]. A timed tran-
sition system as.sociates with each transition a. lower bound and an upper bound
on the time tha.t the transition may be enabled without being taken (many

related real-time formalisms also use. lower and upper time bounds to express
timing constraints [13, 14]). A run of a timed transition system, then, is again

a timed word a sequence of time-stamped state changes. We construct, for a.

given timed transition system T with a. finite set of states, an event-recording
autormaton tha.t accepts precisely the runs of T. This result leads to an algorithm
for checking the equiivalence of two finite timed transition systems.



2 Event-clock Automata

Timed words and timed languages

VWe study formal languages of timed words.' A timed word iT, over an alphabet.!
is a finite sequience (an, tn)(al, t I )... (a., t,) of symbols ai E E that are paired
with nonnegative real numbers ti E R+ such that the sequence t = tl t2 . . . t, of

time-stamps is nondecreasing (i.e., tj 5 tf+j for all 0 < i < n). Sometimes we
denote the timed word iT. by the pair (h, -). A timed language over the alphabet E
is a. set of timed words over E. The boolean operations of union, intersection,
and complement of timed languages are defined as usual. Given a timed language
/C over the, ,lphabct '", the projcc;Cion Untime(L') is obtained by discarding the
time-stamps: Uniimc(£) C "1 consists of all strings i for which there exists a
sequence T of time-stanmps such that (0, -) E £.

Automata with clocks

Timed automata are finite-state machines that are constrained with timing re-
quirements so that they accept (or generate) timed words (and thus define timed
languaiges); they were proposed in [3] as an abstract model for finite-state real-
time systems. A timed automaton operates with finite control a. finite set of
locations and a finite set of real-valued variables called clocks. Each edge between
locations specifies a set of clocks to be reset (i.e., restarted). The value of a clock
always records the amount of time that, has elapsed since the last time the clock
was reset: if the clock z is reset while reading the i-th symbol of a timed input
word (h, t), then the value of z while reading the j-th symbol, for j > i, is tj - tj
(assmning that the clock z is not reset at any position between i and j). The
edges of the automaton put certain arithmetic constraints on the clock values;
that is, the automaton control may proceed along an edge only when the values
of the clocks satisfy the corresponding constraints.

Each clock of a timed automaton, therefore, is a. real-valued variable that
records the time difference between the current input symbol and another in-
pitt symbol, namely, the input symbol on which the clock was last reset. This
association between clocks and input symbols is determined dynamically by the
hehavior of the automaton. An event-clock automaton, by contrast, employs
clocks that have a. tight, predefined, association with certain symbols of the
input word. Suppose that we model a. real-time system so that the alphanbet
symlbols represent events of the system. In most cases, it will suffice to know, for
each event, the time that has elapsed since the last occurrence of the event. For
example, to model a delay of 1 to 2 seconds between the input and output events
of a device., it suffices to use a clock z that records the time that has elapsed
since the last input event, and require the constraint 1 < z < 2 when the output
event occurs. This observation leads us to the definition of clocks that have a.
fixed assqociation with input symbols and cannot be reset arbitrarily.

: hor I.he Caril.y of eX il.iori, we lii r. oi)4rselves Lo ririlile words. Oir resuii.s citri be

e.tleref4md t tthe r'-rnework orw-larigim.jges.



Event-recording and event-predicting clocks

Let " be, a. finite alphabet. For every symbol a E ", we write r,, to denote the
event-recording clock of a. Given a. timed word i. = (a, to)(a, t1 ). .. ),

the value of the clock Y, a.t the j-th position of ?D is tj - ti, where i is the largest
position preceding j such tha.t ai equals a. If no occurrence of a precedes the
j-th position of ii', then the value of the clock X, is "undefined," denoted by -L.
We write R+ = R+ U { I} for the set of nonnega.tive real numbers together with
the special value -L. Formally, we define for all 0 < j < n,

ti - ti if there exists i such that 0 < i < j and ai = a

and for all k with i < k < j, a& 0 a,
if ak 3 a for all k with 0 < k < j.

That is, the event-recording clock x, beha.ves exactly like an automa.ton clock
tha.t is reset every time the automaton encounters the input symbol a. The
v•a1h.i of.X:, thereforc, is determined by the input word, not by the automaton.
Auxiliary variables tha.t record the times of last occurrences of events have been
used extensively in real-time rea.)soning, for example, in the context of model-
checking for timed Petri nets [17], and in assertional proof methods [11, 14].

Event-recording clocks provide timing informa.tion about events in the past.
The dual notion of event-predicting clocks provides timing information about
future events. For every symbol a E E, we write V. to denote the vcent-predicting
clock of a. At each position of the timed word if;, the value of the clock y,,
indica.tes the time of the next occurrence of a rela.tive to the time of the current
input symbol; the special value I indica.tes the a.bsence of a. future occurrence
of a. Formally, we define for all 0 < j < n,

ti - t1 if there exists i such that j < i < n and ai = a
al(Wj)(?,a) = and for all k with j < k < i, an 3 a,

ii ifak $a for all k withj < k <77.

The event-predicting clock y, can be viewed as an automa.ton clock that is reset,
every time the automaton encounters the input symbol a, to a. nondeterministic
negative starting value, and checked for 0 a.t the subsequent occurrence of a.

We write C• for the set {x, y,,• a E "I} of event-recording and event-
predicting clocks. For. each position j of a. timed word ?T, the rlork-valu ation
fi.nction val(O,j), then, is a. ma.pping from CE to R+. The clock constraints
compare clock values to ra.tional constants or to the special va.lue I. Let Q.±
denote the set of nonnega.tive ra.tional numbers together with I_. Formally, a. clock
eon.,traint over the set C of clocks is a. hoolcan combination of atomic formulas of
the form z < c and z > r, where z E C and c E Q0. The clock constraints over C
are interpreted with respect to clock-valuation functions from C to R+: the atom
1_=1- cvaluatcs to true, and all other comparisons that involve I (e.g., J_> 3)
evaua.te to false. For a. clock-valua.tion function -y and a. clock constraint i, we
write -y - b to denote tha.t according to y the constraint b evaluates to trit.



Syntax and semantics of event-clock automata

An event-clock automaton is a (nondeterministic) finite-state machine whose

edges are annotated both with input symbols and with ock constraints over
event-recording a-nd event-predicting clocks. Formally, a. wuvent-clock automaton
. .,nsists of a. finite input alphabet , a. finite set L of locations, a. set La C L

of start locations, a set, Lf g L of accepting locations, and a. finite set E of
e'dges. Each edge is a. quadruple ((:, f', a, i) with a. source location t E L, a. ta.rget.

location (' E L, an input symbol a E Z', and a clock constraint 6 over the
clocks C,.

Now let tis consider the behavior of an event-clock automaton over the timed
input word i- (aa, ta)(alIt,) ... (a, Starting in one of the start locations
and scanning the first input pair (ao, to), the automaton scans the input word

from left to right, consuming, a.t cach step, an input symbol together with its
time-staimp. In location : scanning the i-th input pair (ai, ti), the alutomaton may

proceed to location (' and the i + 1-st input pair iff there is an edge ((, (-', a, 6)
sich tha.t a equals the current input symbol ai and val(i?,,i) satisfies the clock

constraint b. Formally, a. computation of the event-clock automaton A over the
timed input word 7! is a. finite sequence

t., ----- 4~ f --- __" '2 - - --* ... f, -- ,+

of locations (i E L and edges cl = (t.i, ti+l Iai, Oi) E E such tha.t (a E L0 and
for all 0 < i < n, val(iT, i) • qi; the computation is accepting if (:,,+, E Lf. The

timed language 1(A) defined by the event-clock automaton A, then, consists of
all timed words iT such that A has an accepting computation over 7. We write

ECA for the class of timed languages that axe definable by event-clock automa-ta..
The event-clock atutomaton A is an cvcnt-rceording automaton if all clock

,onstraints of A contain only event-recording clocks; A is an ccntf-prcdicting
ntwaton if the clock constraints of A contain only event-predicting clocks.

The class of timed languages tha.t can be defined by these two restricted types
of ,vent-clock automata are denoted ERA and EPA, respectively.

Examples of event-clock automata

The event-clock a.itomn.ton A, of Figure 2 uses two event-recording clocks, -a
and xh. The location to is the staxt location of A,, and also the sole accepting
location. The clock constraint Ya < 1 tha.t is as ociated with the edge from
f, to (.% ensures t.hat c occurs within I time unit of the preceding a. A similar
mechanism of checking the valuc of xh while reading d ensures, that the time
difference between I, and the subsequent d is always greater than 2. Thuis, the
timed language C(A 1 ) defined by A1 consists of all timed words of the form
((t'd)"', t) such tha.t m > 0 and for all 0 < j < m, t.1j+ 2 < f4j + 1 and t.U+a >

t j+I + 2. Note tha.t the timed larnguage 2(A1 ) ca.n also he defined using event-

predicting clocks: require y, < 1 while reading a, and yd > 2 while reading h.
The duality of the two types of clocks is further illustrated by the autonaata

of Figure 2. The event-recording automaton A2 accepts all timed words of the
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form (ab*h, T) such that the time difference between the two extreme symbols is 1,
which is enforced by the evcnt-recording clock z,. It is easy to check tha.t there
is no event-predicting automaton that defines the timed language C(A2 ). The
event-predicting automaton A3, on the other hand, accepts all timed words of
the form (aa*h, f) such that the time difference between the two extreme symbols
is 1; for this purpose, the event-predicting clock yh is used to predict the time of
the first b. There is no event-recording automaton that defines £(A3 ).

3 Deterministic Event-clock Automata

A finite-state machine (with a. single staxt location) is deterministic iff all input.
symbols that label edges with the same source location are pairwise distinct.. We
consider for event-clock automarta. the notion of determinism thalt was proposed
for timed automata in [3]. The event-clock automaton A = (f,, L, Ln, Lf, E)
is dctcrrn.ti'.46tic if A has a. single start location (i.e., LI 1 = 1) and nyv twvo
edges with the same source location and the same input, symbol have mutually

exclusive clock constraints; that is, if (Ii, (', a, ' 6 ) E E and (t, ", a,2) E E then
for all clock-valuation functions -y, if -y H il then -y V 02. The determinism
condition ensures that a.t each step during a computation, the choice of the next
edge is uniquely determined by the current location of the automaton, the input
word, and the current position of the automaton along the input word. It is
easy to check that every deterministic event-clock automaton has a.t most one
computation over any given timed input word.

Of our examnples from the previous sectinn, the event-clock automata. A,
and A.3 are deterministic. While the automaton A2 is nondeterministic, it. can



be dcterminized without changing its language, by adding the clock constraint
xa < 1 to the self-loop a.t location ().

In the theory of finite-sta.te machines, it is well-known that every nondeter-

ministic automaton can be determinized; that is, the deterministic and nonde-
terrminstic varieties of finite-state mnahines define the same class of languages
(the regular languages). In the case of timed automata., however, the nondeter-
ministic, variety is strictly more expressive than its deterministic counterpart [3].
WVe now show tha.t the event-clock automata, form a, determinizable subiclass of

the timed automata.

Theorem 1 (Determinization). For cverry event-clock (event-recording; event-
predicting) automaton A, there i.q a determini.stir event-clock (evcnt-recording;
ev.ent-predinting) automaton that define.,/2(A).

Proof. Let A be the given event-clock automaton with the location set L. The
locations of the determinized automaton Det(A) are the noncmpty subsets of L.

Consider a. location L' C L of Det(A), and an input symbol a E E. Let E' C E
he the set of all a-labelecd edges of A whose source locations arc in L'. Then, for
.veiry nonempty subset E" C E', there is an edge from L' to L" labeled with the

input symbol a and the clock constraint 6 iff LV contains precisely the target
luntions of the edges in E", and S6 is the conjunction of all clock constraints
of E"-cdgcs and all negated clock constraints of (E' - E")-edges. It is easy to
check that the clock constraints on different a-labeled edges starting from L' are
mutually exclusive. U

Notice that the determinization of an event-clock automaton causes an expo-
nential blow-up in the number of locations, but changes neither the number of
clocks nor the constants tha.t occur in clock constraints.

The key for the determinization of event-clock automarta is the property that
a-t each step during a. computation, all clock values are determined solely by
the input word. We therefore obtain derminizable superclasses of event-clock
automata, if we add more clocks tha.t do not violate this property. For example,

for each input, symbol a and each natural number i, we could employ a. clock
z' tha.t records the time since the i-th occurrence of a, and a. clock x', that
records the time since the i-th-to-last occurrence of a (i.e., r, = .r',). Or, more
ambitiously, we may want to use for ea.ch linear temporal formula. p a. formtla-
recording clock r, tha.t measures the time since the last position of the input
word at which ýp was true, and a. formdla-predicting clock y., that measures the
time until the next position a.t which ýp will be tnie.

4 Properties of Event-Clock Automata

Event-clock atutomata as labeled transition systems

W,. now consider an alternative semantics for event-clock automata., using labeled

transition systems. Let A = (E, L, Ln, Lf, E) be an event-clock automaton. A
.0tatc of A is a. pair ((-,y) that consists of a. location 4 E L and a. clock-valu ation



function 7 from CE to R.+, which determines the va-lues of all clocks. The state
((7 sinitial if ( Lo anxd -y~)=-L for all input, symbols a E f~; (( )is final

if i E Lf a-nd -)(y,) = -L for all a E .Sr. We write. SA for the (infinite) set. of stares
of the, even.t-clock- automaton A and definc a. labeled tranisition relation over SA

to captuire t~he bcha-;ior of A over timed words.
For two states s,.'E SA, un Input. symbol a E E~, and a. real-vaIlie( time

delaiy 6 E R+, let. A~ if the anitoninton .4 many proceed from the state .; to the
State ,;' by reading the input symbol a, and let s-ýS' if A many proceed from .

t~o s'' by letting time. 6 pass. Formanlly, -~ )(' y') if there is a. clock-valuation
function -y" anxd an edge (,'a, (6) E E suich tha~t -y = -y"[y,. := 0] (i.e., -y agree-s
with -y" on all clocks, except U,,, which in 7ý evaluates- t~o 0), -y' = -y"[Xa := 01,
aind 6 ; and (t:, )(t', -y') if f. = ' nd for all input symbols b E E

2. if 7'(yb) =1L then 7ý(Yb) =1L, else -y(yb) = 7'(!I) + 6

W~e inductively extend the labeled transition relation t~o timled words:s I~ NI i f
there is a.State s" E SA Such tha~ts- '+s" anid,,; if IT, (an, to). .. (a,ý,,t,,) and

= ;+ ), then .9 - S'* if there. is a. St~a~te s" such tha~t s~ mi s"ad
(a,,~, ~The following lemmani. shows the correctness of the labeled-

transition-systemn semanntics for event-clock auitomnata.

Lenuma 2. Thr criont-clock- automnaton A arcrcpt.,t thr timed word IT: if . i- f

fo~r .40omc in~ital iftatr -; and .qomrn final Oqake s' of A.

The region construction

The analysis of timed auitomata. builds on the so-called region construction1,
which transforms a. timed auitomaiton into an mtintimd finite-state imachine ýI, 31.

,!,e- akcPpply t.!, region coit~t~riit~ion +o event-clock automata.. INe consider
aan the given eve~nt-clock auitomiaton A anid begin wit~h defining the regin

equfivanlence relation ý5A as a finite, partition of the infinite Sta~te space S4.

W~e assuime tha~t all clock constraints of A contain only integer const~ant~s
(otherwise., all. constants need to be multiplied by the, leanst common multiple of
the denominators of all rationail numbers that appear in the clock const~raunts
of A). Let r he the. largest. integ(er constant that aippeirs in a clock con-;fraint.
of A. Informally, two clock- valua tion functions -y and -y' from C~r t~o rx. Iare
rregotz-equivaitrat, written -y =-A -f', if -y and -y' agree. on which clocks have the
undefined value -L, agree. on the, integral1 parts of all defined clock values thant.
a~re at, most r., anxd agree on the ordering of the fractional parts of all defined
clock values (the, fractional1 part of the event- recording clock x,, aceording to -Y
is ()- (x j;the fractional part of the event-predicting clock yja Is[(YI
7r(ytJ). Two stntes (41, -y), ('y)E SA ar ego-en?'ln if ti = (.- and 7 =Y 7

A formal de~finition of the region-equivalenice relation ý5A is given in [3].
A rrgioti of the event-clock -nauomaton A4 IS an1 ý---eqtiivalecne class of states

in SA. The number of A-regions is finitre linear in the numnber of locations,
exponential in the numnber of clocks (thantt is, exponential in the size of the inpuit
alphanbet), ind exponential in the size of the clock const~raints of A4. The region



equilvalence is instnirnentnal for Analyzing event-clock automanta, because ý--A is A1
b isi mi ilation.

Lenin-a 3. For all -dtatr'.q E . SA~ of an evrnt-clocrk automaton A, all
i .prqt t~ymbolq a of .4, and all rral-ralurd time drlay.4 ýi E R+, if s,~ ~ n

.,;'2,~2 then there i.i a .iatar .9' E SA and a time delayj 6' E R.+ .qurh that

'ý A S' and. s, 3.

Now we. are ready to define the region automaton Rr~q(A) of A, nn iint~imed
finite.-state machine over the input alphabet Z. The location,. of Rrg(A) are the
regions of A. A region is starting if it, contains an initial state of A, And accepting
if it contains a final state of A. There is ani edge from the region P to the region
p' labelced with the, inputt symbol a if there. nrc two states -q E p and s~' E p', and
ai tIim delany u6 E R.+, sutchý that F~~i2.' rom [Acmmns 2 and 3 it follows that.
the region automaton Rcg(A) defines the uintimed language Untimr(C( A)).

Thcorern4 (Untimning). For every civcnt-rlork avtomaton. A. the uitnttmd lav-
guagc Untimc(LC(A)) i.i rrgular.

Closure properties and decision problem-s

While the class of timed automa~tan is not. closed uinder complement,, and the
languiage inclusion (verification) problem for timed automata. is undecidable., the.
subclaIss of event-clock automa~tan is well-behaved.

Theorem i5 (Closure properties). Each of the cla.qiqc.q ECA, ERA, and EPA
of timed langnuagc.q are clo.qcd tinder union, inntcrrhcton., and comnplement..

Proof. Closure uinder union is trivial, beeause event-elock automata. admnit multi-
plc start, locations. Closure uinder intersection is also straightforwa~rd. because the
staindard automata-theoretic product construtction A, x A-2 for two given event.-
clock (event-re~cording; event-pre~dicting) automiata. A, and A2 yields an event.-
clock (event- record i ng; evenit-predicting) awu omaton. Clost ire uinder complement
relics on the determinization construction: given an event-clock (event-re~cording;
event.-predicting) automaton A, the xevent-clock (event-recording; event-predict-
ing) automiaton -'Dct(A) tha~t resul~ts from complementing the acceptance condi-
tion of DOt(A) (interchange the accepting and the nonaccepting states of Drt(A))
defines the. complement of the timed langiiage C(A). U

U nlike (nondrterministic) timed atittom~at, howe-,rver, event-clock aluitomata. are.
not closed uinder hiding and renaming of inpit symbols. This is b-caulse the
timed lanxguage £ that contains all timed words uiT = (h, t) over a uinary alphabet.
in which no two symbols occur with time dilfference I (i.e., tj - tj 54 for all
positions i and j of ?T-) cannot be, defined by a. timed automaiton [3). With com-t
plementation and renaming (or hiding), on the other hand, £ is easily de~finable
from at language in ERA nl EPA.

The de~terminization, closutre properties, and region construction can be used
t~o solve decision problems for evenit-clodc automata. To check if the, timed lan-
gulage of anx event-clock auitomnaton A is empty, we construct the region automa.-
ton Rry(A) and check if the untimed languange of Rrq(A) is empty. To check if



the language of the event-clock automaton .41 is included in the language of the
event-clock automaton A2 , we determinize A2 , complement. Dct(A 2 ), take the

product with A,, nnd check if the language of the resulting .-vent-clock automa-

ton Al x-Dct(A2 ) is empty by constructing the corresponding region atomaton.

Theorern 6 (Language inclusion). Thr probiem of chrckiny ifC(A.) C £(. 9 )
for two evcent-clock automata A, and A 2 ii drcidahlr in PSPACE.

On the other hand, the problem of checking if the language of a. given event-
recording (or event-predicting) automaton is empty can be shown to be PSPACE-

hard (similar to the hardness proof for emptiness of timed automata. [3]).

Relationship between classes of timed automata

We briefly review the definition of a timed automaton [3]. A (nondetterministic)
timed automaton A consists of a finite input alphabet E, a finite set L of loca-
tions, a set Lo C L of start locations, a. set .L L of accepting locations, a
finite set C of clocks, and a. finite set E of edges. Each edge r, is la.heled with
an input symbol, a clock constraint over C, iajd a re.qet condition C, C C that
specifies the clocks tha.t are reset to 0 when the edge c is traversed. Every timed
automaton .4, then, defines n. timed language L(A), and we write NTA for the

class of timed languages tha.t are defina-ble by timed aitomata. The class NTA
is closed under ,imion and intersection, but not under complement.

The definition of determinism for timed auitomata is the same as for event-
clock automnata. We write DTA for the class of timed languages that are definable
by deterministic timed automanta.. Since DTA is closed under all hoolean opera-

tions, DTA is strictly contained in NTA.

Theorem 7 (Relationship between classes).

(1) ERA • EPA (2) EPA g ERA (3) ERA U EPA c ECA
(4) ECA c NTA (5) ERA C DTA (6) EPA 9 DTA
(7) DTA • ECA

Proof. For (1), the language of the event-recording automaton A 2 of Figure 2
is not definable by an event-predicting automsaton. For (2), the language of
the event-predicting automnaton As of Figure 2 cannot be defined by an event-

recording automaton. Similarly, for (3) it is possible to combine A2 and A,- into
anl event-clock mitomnton whose language is neither in ERA nor in EPA.

Every event-clock automaton can be tranlated into n. timed autonmaton. While
the translation preserves determinism for event-recording atitomnata, event-pre-

dicting clocks introduce nondeterminism. The inclusions (4) and (5) follow. In-
clusion (4) is strict, because ECA is closed under complement while NTA is not.

Inclusion (5) is strict. because of (7). For (6), the timed language {(a"', t ... t,,) 1
30 < i n.t< , - tj = 1) is in EPA bh,t not. in DTA. For (7), the timed language

{(aaa, tntf 2 ) I t 2 - tn = 1) is in DTA bNt not in ECA. U

In [5], we defined another subclnss of NTA that is closed tinder all boolean
operations, namely, the class 2DTA of timed languages that are definable by



(cteri-mnistic twoway automata, that can read the input word a. bounded number
of times. While ECA is easily seen to be contained in 2DTA, and while there
are obvious similarities between event-predicting clocks and the twoway reading
of the timed input word, the exact relationship between event-clock automata.
Mnd deterministic twowa"y automata remains to he studied. However, because
they admit nondeterminism, event-clock automata are perhaps more suited for
specification than deterministic twowny automanta..

5 Timed Transition Systems as Event-clock Automata

Timed transition systems

A fran..i.iofi .,y.,tcm T consists of a. set S of states, a. set So C S of initial states,
and a. finite set T of transitions. Each transition 7 E T is a. binary relation over S.
For each state .4 E S, the Set 7(.q) gives the possible 7-successors of s; that is,

7f,) = {.q' 1 (.,s') E r}. The transition system T is finitc if the set S of states is
finite. A run .4 of the transition system T is a. finite sequence so,-- 4 . : ...
of states such that So E So and for all 0 < i < n, there exists a. transition 7i E T

such that .9i+, E 7r(A1). The transition r is rmabled a.t the i-th step of the rin .
if r(sl) is nonempty, and 7 is taken at the i-th step if s9 E r(si ) (i.e., multiple
transitions ma.y be taken at the same step). A variety of programming systems,
such as message-passing systems and shared-memory systems, can he given a.

transition-system semantics [12].
The model of transition systems is extended to timed transition systems so

that it, is possible to express real-time constraints on the transitions [7]. A ty,'rcd
trrLt.*ithon..y.itern T consists of a. transition system (S, So, T) and two functions
I and ui from T to R.+ that ns.socia.te with each transition r E T a lower bo,,ud

1(r) and an upper bound U(7). Informally, the transition r must be enabled
continuously for a.t least 1(7) time units before it can be taken, and r must not
be enabled continuously for more than 71(r) time units without being taken.

Formally, we associatc a. real-valued time-stamp with cach state change along a.
run. A timcd run f of the timed transition system T is a finite sequence

tol ti t 2  tý

of stn.tes .si E S and nondecreasing time-stanmps ti E R+ such tha.t .4 is a. rni of

the underlying transition system and

1. Upper Bound: if r is enabled a.t all steps k for i < k < j, and not taken at
all steps k for i < k < j, then tj - tj < u(r);

2. Lowner Bound: if r is taken at the j-th step then there is some step K < j
such tha.t tj -- tj >__ 1(r) and r is enabled at all steps k for i < k < j, and not
taken a.t all steps k for i < k < j.

In other words, to is the initial time, and the transition system proceeds from
the state si to the state q.i+l a.t time ti+,. The scmantic.q of the timed transi-

tion system T is the set of timed runs of T. Two timed transition systems are
cquivalcrnt if they harve the same timed runs.



From timed transition systems to event-recording automata

We now show that the set of timed runs of a. finite timed transition system
can he defined by an event-recording automaton. For this purpos,-, we n(, d to
switch from the state-bas.d semantics of transition systems to an event-based
semantics. With the given timed run f, we associate the timed word

?7.f = ( ( , .4, ,0 ), )( Is),f.I, ) ( A -) 2 ... ( A - Is" ,t

where I is a special symbol not in S (as usual, S. = SU {3_L}). Notice that the
timed run f and the corresponding timed word ?T(F) contain the same informa.-
tion: each event (i.e., state change) of f is modeled by a pair of states a source
sta.te and a. taxgct state. Every finite timed transition system T = (S, T, SO, 1, u),
then, defines a timed language £(T) over the alphabet S.L x S, namely, the set
of timed words i?;(f) that correspond to timed runs 7 of T. It is easy to check
that two timed transition systems are equivalent iff they define the same timed
langualage.

Theorem 8 (Timed transition systems). For evcryj finite timed transition
system T, there i.i an rvent-rrcording timed automaton AT that definc.s the timed
language £(T).

Proof Consider the given finite timed transition system T. Each location of the
corresponding event-clock automaton AT records a state s E S and, for each
transition " E T, a pair of states ((Y(r), /ý(7)) E S± x S such that if r is enabled
in s, then r has been enabled continuously without being taken since the last
state change from a(-,) to 13(7). In addition, we use a. special location to as the
sole start location of AT. Every location is an accepting location.

For every initial state so E So, there is an edge from to to (so, (a, f,)) la-
beled with the input symbol (1-,so) and the trivial clock constraint true, where
a(7) =1 and f"(r) = so for all transitions r E T. In addition, there is an edge
from (s, (Y,,,3)) to (s', (n",'t')) labeled with the input symbol (.,.s') and the
clock constraint (b iff there is a transition r E T such that (.,s') E r, and for all
transitions T E T,
1. if r is enabled in .9 and 7( s r-.q), then (.'(),;'(r)) (r1(),el(-)), else

W( 7"( ),13'(7)) = s s ;

2. if z- is enabled in s, then q contains the conjunct 71.,T7.,•3 r) _ u.(");
3. if s' E r(s), then , contains the conjunct X(,t 7 . 1,T) (

Notice that the size of the event-recording automaton AT is exponential in the
size of the timed transition system T. E

To cheek if two timed transition systems T1 and T2 are equivalent, we construct
the corresponding event-recording automata AT, and AT, and check if they
define the same timed language.

Corollary 9. The problem of checking if two finite timed tran.sition systrm.' arc
equ~ivalent is. decidable in EXPSPA CE.
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